JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
M.Tech II - Semester Examinations, March/April 2011 ADVANCED MATHEMATICS IN CHEMICAL ENGINEERING (CHEMICAL ENGINEERING)
Time: 3hours
Max. Marks: 60

Answer any five questions

 All questions carry equal marks1. An Elevated horizontal Cylindrical tank of 1 mt diameter and 2 mt long is insulated with asbestos lagging of thickness $\mathrm{l}=4 \mathrm{~cm}$ and is employed as a maturing vessel for a batch chemical process. Liquid at 95 degrees centigrade is charged in to the tank and allowed to mature for 5 days. Calculate the final temperature by forming a differential equation assuming that heat loss through supports is negligible and the thermal capacity of the lagging can be neglected. Use the following data.

Liquid film coefficient of Heat transfer $\quad\left(h_{1}\right)=150 \mathrm{w} / \mathrm{m}^{2}$
Thermal conductivity of asbestos $(k)=0.2 w / m^{0} c$
Surface coefficient of heat transfer by convection and radiation $\left(h_{2}\right)=10 \mathrm{w} / \mathrm{m}^{2}{ }^{0}{ }_{C}$
Density of the liquid
$(\rho)=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Heat capacity of the liquid $(\mathrm{s})=2500 \mathrm{~J} / \mathrm{kg}{ }^{0}{ }^{\circ} \mathrm{C}$
Atmospheric temperature (t) is assumed to vary according to $t=10+10 \operatorname{Cos}(\pi \theta / 12)$, where θ is time in hours
Atmospheric temperature at the time of charging is $20^{\circ} \mathrm{C}$.
2. Solve
(a) $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=x e^{3 x}+\sin 2 x$
(b) $\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}$
3. Apply Cholesky Factorisation method to solve the equations

$$
\begin{equation*}
3 x+2 y+7 z=4 ; 2 x+3 y+z=5 ; 3 x+4 y+z+7 \tag{12}
\end{equation*}
$$

4. Solve in series the equation by Frobenius Method the differential equation
$9 x(1-x) \frac{d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+4 y=0$
5. Solve $\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}=2 e^{2 x}+3 x^{2} y$

::2::

6. (a) Solve the difference equations
(b) Prove that $e^{x}=\left(\frac{\Delta^{2}}{E}\right) e^{x} \cdot \frac{E e^{x}}{\Delta^{2} e^{x}}$, The interval difference being' h'.
7. Use the Gerschgorin circle theorem to estimate the eigenvalues of:

$$
A=\left[\begin{array}{cccc}
10 & -1 & 0 & 1 \\
0.2 & 8 & 0.2 & 0.2 \\
1 & 1 & 2 & 1 \\
-1 & -1 & -1 & -11
\end{array}\right] .
$$

8. Determine the Largest Eigen value and corresponding Eigen vector of the matrix

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

